Òåñòèðîâàíèå ñîôòà - ñòàòüè

ce076b8f

Ëèòåðàòóðà


[1] A. Hartman. Software and Hardware Testing Using Combinatorial Covering Suites. Haifa Workshop on Interdisciplinary Applications and Graph Theory, Combinatorics and Algorithms, June 2002.
Available at
http://www.agedis.de/documents/d435_1/CombinatorialProblemsinSWTesting-finalDraft180703.pdf

[2]  A. Hartman, L. Raskin. Problems and Algorithms for Covering Arrays. Discrete Mathematics 284:149-156, 2004.
Available at http://www.agedis.de/documents/d434_1/
AlgorithmsForCoveringArraysPublication191203.pdf

[3] C. J. Colbourn. Combinatorial aspects of covering arrays. In Proc. of Combinatorics 2004, Capomulini, Italy, September 2004. To appear in Le Matematiche (Catania).
Available at http://www.dmi.unict.it/combinatorics04/documenti%20pdf/colbourn.pdf

[4] H. Fredricksen and J. Maiorana. The Baltimore Hilton Problem. Technology Review, v. 83, no. 7, June 1980.

[5] F.-S. Marie. Solution to problem number 58. L’Intermédiaire des Mathématiciens, 1 (1894), 107–110.

[6] N. G. de Bruijn. A Combinatorial Problem. Koninklijke Nederlandse Akademie van Wetenschappen 49, 758-764, 1946.

[7] M. H. Martin. A problem in arrangements. Bulletin of American Mathematical Society, 40:859–864, 1934.

[8] I. J. Good. Normally recurring decimals. J. London Math. Soc. 21:167–169, 1946.

[9] D. Rees. Note on a paper by I. J. Good. The Journal of the London Mathematical Society, 21:169–172, 1946.

[10] Ä. Êíóò. Èññêóñòâî ïðîãðàììèðîâàíèÿ. Òîì 1. Îñíîâíûå Àëãîðèòìû. Âèëüÿìñ, 2002.

[11] H. Fredricksen. A survey of full length nonlinear shift register cycle algorithm. SIAM Review, 24(2):195–221, 1982.

[12] F. J. MacWilliams and N. J. A. Sloane. Pseudo-random sequences and arrays. Proc. IEEE 64:1715–1729, 1976.

[13] C. D. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–629, 1997.

[14] Fan Chung and J. N. Cooper. De Bruijn Cycles for Covering Codes. 2003.


Available at [15] L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acquisition using color structured light and multi-pass dynamic programming. In Int. Symposium on 3D Data Processing Visualization and Transmission, pages 24–36, Padova, Italy, June 2002. [16] J. Pagès and J. Salvi. A new optimised De Bruijn coding strategy for structured light patterns. 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 23–26, August 2004. [17] S. W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills, CA, USA, rev. ed., 1981. [18] A. Lempel. On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Transactions on Computers, C-19:1204–1209, 1970. [19] H. Robinson. Graph Theory Techniques in Model-Based Testing. 1999 International Conference on Testing Computer Software, 1999.
Available at http://www.geocities.com/harry_robinson_testing/graph_theory.htm [20] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math., 23:207–210, 1978. [21] T. Etzion and A. Lempel. Algorithms for the generation of full-length shift-register sequences. IEEE Transactions on Information Theory, 30:480–484, 1984. [22] T. Etzion. An algorithm for constructing m-ary de Bruijn sequences. Journal of Algorithms, 7:331–340, 1986. [23] R. A. Games. A generalized recursive construction for de Bruijn sequences. IEEE Transactions on Information Theory, 29:843–850, 1983. [24] C. J. A. Jansen, W. G. Franx, and D. E. Boekee. An efficient algorithm for the generation of DeBruijn cycles. IEEE Transactions on Information Theory, 37:1475–1478, 1991. [25] A. Ralston. A new memoryless algorithm for de Bruijn sequences. Journal of Algorithms, 2:50–62, 1981. [26] E. Roth. Permutations arranged around a circle. The American Mathematical Monthly, 78:990–992, 1971. [27] S. Xie. Notes on de Bruijn Sequences. Discrete Mathematics, 16:157–177, 1987. [28] F. S. Annexstein. Generating de Bruijn Sequences: an Efficietn Implementation. IEEE Transactions on Computers, 46(2):198–200, 1997. [29] M. Vassallo and A. Ralston. Algorithms for de Bruijn sequences — a case study in the empirical analysis of algorithms. The Computer Journal, 35:88–90, 1992. [30] M. J. O’Brien. De Bruijn graphs and the Ehrenfeucht-Mycielski sequence.Master’s thesis, Mathematical Sciences Department, Carnegie Mellon University, 2001. [31] A. Iványi. On the d-complexity of words. Ann. Univ. Sci. Budapest. Sect. Comput. 8, 69-90, 1987. [32] A. Flaxman, A. W. Harrow, and G. B. Sorkin. Strings with maximally many distinct subsequences and substrings. Electronic Journal of Combinatorics 11(1, 2004.
Available at http://www.combinatorics.org/Volume_11/PDF/v11i1r8.pdf


[33] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. W. Rackoff. Random walks, universal traversal sequences, and the complexity of maze problems. In Proc. of 20-th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October 1979, pp. 218–223. Äàííàÿ ðàáîòà ïîääåðæàíà ãðàíòîì Ðîññèéñêîãî Ôîíäà ñîäåéñòâèÿ îòå÷åñòâåííîé íàóêå.

Ñîäåðæàíèå ðàçäåëà