Данная статья представляет два возможных
Данная статья представляет два возможных подхода к построению тестовых последовательностей при отсутствии какой-либо информации, кроме числа возможных воздействий на тестируемую систему и длины последовательности, которую хотелось бы получить. Оба подхода приводят к построению слов в конечном алфавите, обладающих специфическими комбинаторными свойствами. Первый подход основывается на предположении, что поведение тестируемой системы определяется фиксированным числом последних оказанных воздействий. Последовательности, построенные на его основе, соответствуют словам де Бройна — самым коротким словам, содержащим в качестве подслов все последовательности определенной длины. Поскольку слова де Бройна имеют помимо тестирования массу других приложений, имеется достаточно много посвященных им работ и различных эффективных алгоритмов их построения. Второй подход предлагает использовать универсальные покрывающие слова, обеспечивающие покрытие путей некоторой длины во всех регулярных сильно связных детерминированных конечных автоматах с фиксированным числом состояний. Несмотря на наглядность предлагаемой идеи, она, по-видимому, до сих пор не рассматривалась, и найти работы, в которых использовалось бы понятие, эквивалентное определенным выше универсальным покрывающим словам, автору не удалось. Такие слова устроены сложнее, чем слова де Бройна, и пока не найдено ни хорошего описания их свойств, ни удобного аппарата для работы с ними, подобного графам де Бройна, ни достаточно эффективных алгоритмов их построения. Все это — задачи для продолжения исследований. Другое возможное направление развития — использование знаний пользователя о системе, которые в реальности чаще всего не нулевые, для построения более эффективных и более коротких тестовых последовательностей. Для начала можно использовать знания о том, что некоторые операции не изменяют состояния системы, некоторые другие, такие, как конструкторы объектов, не зависят от него, впоследствии можно добавить чаще всего известные предусловия операций, и т.д.